SEVERITY OF PERIPHERAL NEUROPATHY, IN DIFFERENT DOMAINS, IN TYPE II DIABETIC PATIENTS

Avidos, Liliana¹; Magalhães, Alexandra²; Criado, M Begoña³; Nogueira, Assunção⁴

¹Principal Adjunct Professor at the IPSN. Vale do Ave School of Health. Department of Health Sciences. Coordinator of the Gerontology laboratory of the Artificial Intelligence and Health research center: IA &Saúde.
²Degree in Podiatry from the IPSN. Master’s in clinical podiatry. Podiatrist in private clinical centers and Podiatrist in public health units.
³Principal Adjunct Professor at IPSN. Vale do Ave School of Health. Member of the Gerontology laboratory of the Artificial Intelligence and Health research center: IA&Saúde.
⁴Adjunct Professor at IPSN. Vale do Sousa School of Health. Department of Health Sciences. Member of the Gerontology laboratory of the Artificial Intelligence and Health research center: IA&Saúde.

RESUMEN

Introduction: Diabetes mellitus is a chronic degenerative disease that can significantly impact both life expectancy and quality of life among affected populations, primarily by disrupting metabolic control and exacerbating disease complications. Objective: To assess the severity of neuropathy across four domains (pain, loss of sensation, postural instability, and depression) in individuals with diabetes mellitus. Materials and Methods: This was a cross-sectional, descriptive-correlational, and qualitative study conducted during the authors’ professional internship. The study population comprised diabetic individuals attending outpatient clinics for diabetic foot care at Hospital de S. João - Unidade de Valongo and Centro Hospitalar do Alto Ave in Guimarães. Variables included gender, age, type and duration of diabetes, neuropathic characteristics, balance, dependency/independence, and depression. Data analysis was performed using SPSS® software version 22. Results: Regarding neuropathy severity, most diabetic patients exhibited loss of sensation and moderate pain, with no apparent postural instability or depression. However, both instability and depression were observed when neuropathic signs were present. Conclusions: The presence of neuropathic signs was associated with increased postural instability, reduced functionality, and a higher prevalence of depressive symptoms. Furthermore, a positive relationship was observed between pain severity and depressive symptomatology.

INTRODUCTION

The developed world has witnessed an increase in the prevalence of diabetes mellitus in recent decades. According to the International Diabetes Federation (IDF), in 2021, approximately 463 million adults were living with diabetes all over the world, with most cases found in high-income countries (IDF Diabetes Atlas, 9th edition). In developed nations such as the United States and countries in Europe, prevalence rates reach alarming levels. For example, in the United States, the Centers for Disease Control and Prevention (CDC) reported that in 2021, more than 34 million people had diabetes, with more than 90% of cases being type 2 diabetes (CDC Diabetes Statistics Report). Additionally, the National Observatory for Diabetes 2020 published the data for the year 2018 and found a very alarming fact, Intermediate Hyperglycaemia in Portugal, 2018, reaches 28.0% of the Portuguese population aged between 20 and 79 years (2.1 million subjects) (Raposo, 2020), further corroborating previous authors
Peripheral diabetic neuropathy (PDN) is a common and disabling complication of DM that consists of a pathologic progressive process of lesions of peripheral nerves (Pedrosa, 2004). Persistent hyperglycaemia is the principal factor related to DPN (Boulton, 2014). The pathophysiology of diabetic neuropathy is multifactorial and not fully understood. Chronic hyperglycaemia, coupled with other metabolic disturbances such as oxidative stress, advanced glycation end products (AGEs) and altered insulin signalling contribute to nerve damage. Increased glucose flux through the polyol pathway, leading to osmotic stress, is also (Khalid et al., 2022).

The most common form of diabetic neuropathy distal symmetric polyneuropathy is the focus of this Primer, and as such will be referred to as diabetic neuropathy throughout. Distal symmetric polyneuropathy manifests with a ‘stocking and glove’ distribution, whereby the hands and lower limbs are commonly affected. Other diffuse neuropathies secondary to diabetes can occur and include the constellation of autonomic neuropathies, such as cardiac autonomic neuropathy, gastrointestinal dysmotility and diabetic cystopathy and impotence . Focal neuropathies, although less common, include dysfunction of individual peripheral nerves leading to isolated mononeuropathies, or less commonly to nerve roots leading to radiculopathy or polyradiculopath (Feldman, E. L., et al., 2019).

The pain associated with PDN is a complex process involving not only sensitive but also cognitive and emotional mechanisms (Tesfaye & Selvarajah, 2012). Neuropathic pain has a great influence on the quality of life of these patients being an important factor for depression (Ziegler, 2008; Jensen 2002). Peripheral diabetic neuropathy also compromises postural stability as the integrity of the proprioceptive system is affected, making difficult postural control, with falls and lesions associated (Cimbiz & Cakir, 2005). Neuropathic diabetic patients often report postural instability as a factor affecting their daily activities, even resulting in depression (Anandhanarayanan et al., 2022).

The main object of the present study is to assess the severity of neuropathy in four domains: pain, loss of sensitivity, postural instability, and depression, in a Portuguese sample of diabetic patients. We also compare the characteristics of diabetic neuropathy, instability, functionality, and depression according to age and sex.

MATERIAL AND METHODS

The present study is a cross-sectional, descriptive correlational, and qualitative one. The population included in this study consisted of diabetic patients with peripheral neuropathy who attended the outpatient clinic of Diabetic Foot at S. João Hospital, E.P.E., in Valongo and at Hospital Centre of Alto Ave, E.P.E., in Guimarães, both in Portugal. The final sample consisted of 60 diabetic patients, older than 18 years, who have shown no exclusion criteria. All the patients signed the informed consent. The study had the approval of the ethical committee of the hospitals involved.

Exclusion criteria of this study were defined as: individuals diagnosed with non-diabetic neurological pathology; individuals with cognitive impairment, diagnosed or evident; individuals diagnosed with critical pain taking non-steroidal anti-inflammatory drugs (NSAIDs) and/or opiates, and who have taken on that day; individuals with nondiabetic symptomatic polyneuropathy.

Each patient filled out a questionnaire for data collection related to socio-demographic characteristics. The instrument used for the neuropathic signs and symptoms was the publication of the State Department of Health, Federal District, concerning the Guidelines of the Brazilian Society of Diabetes to evaluate diabetic neuropathy (Pedrosa et al 2014). We applied the Berg Scale (Berg et al 1992), with 14 items to assess balance. To assess the functionality of the patient, the questionnaire of Lawton and Brody (Lawton & Brody 1969) was used, and finally, the Beck Scale (Beck et al 1996), containing 21 questions, was conducted to evaluate depression. The intensity of pain was evaluated by the analogic visual scale (AVS), considered a reliable and sensitive scale for the evaluation of pain (Wodd, 2004).

The Statistical Package for Social Sciences-version 26.0 (SPSS Statistics 26.0, Chicago, USA) was used for the statistical treatment of data. The significance level for rejecting the null hypothesis in all statistical tests was set at α = 0.05 (95% confidence interval). The main statistical tests applied were; the Shapiro-Wilk test, the student’s t-test, the Chi-square test, the Main-Whitney test, and the Spearman test.

RESULTS

In this chapter, we will present the results obtained in this research, from the sample characterization data, as well as the results that aimed to answer the proposed objectives.

Characterization of the sample

Of the 60 patients, 32 (53.3%) were females, and 28 were males (46.7%). The mean age of the patients was 67.3 years (minimum 47 and maximum 83) and 48 patients (80%) were retired. Type 2 diabetes mellitus was present in 54 patients (93.1%) and 30 patients (50%) the disease was present for more than 20 years. Concerning concomitant diseases, 48 patients (80%) suffered from hypertension, 12 (20%) had a diagnosis of cardiac pathology and 36 (53.3%) had dyslipidaemia.

The severity of neuropathy concerns loss of sensitivity, pain, postural instability, and depression

The severity of neuropathy was evaluated by inspection, presence of deformities, loss of protective sensitivity, presence of neuropathic signs and symptoms, and pain. By inspection we saw that 48 patients (80.0%) had dry skin or cracks, 44 patients (73.3%) presented ringworm nails, in 38 (63.3%) we found calluses and dilated dorsal vessels in 32.
(53.3%), hairs were present in 32 patients (53.3%). On the other hand, 46 patients (76.7%) had normal skin colour and 52 (86.7%) wore proper shoes. Concerning deformities, hollow foot was present in 18 (30%) patients and flat feet was also present in 18 patients (30.0%). Lateral compression and claw toes were less frequent (26.7% and 23.3%, respectively). As far as neuropathic signs and symptoms are concerned, 34 patients (56.7%) showed serious neuropathic symptoms and 16 (26.7%) moderate ones. We also found in 34 patients (56.7%) moderate neuropathic signs. In 32 patients (53.3%), we found loss of sensitivity evaluated by monofilament, mainly in the 3rd and 5th metatarsus.

Concerning pain, 48 patients (80%) presented a painful PDN (≥5 neuropathic symptoms and ≥3 neuropathic signs) and 38 patients (63.3%) presented PDN with a risk of ulceration (≥3 neuropathic signs). In 16 patients (26.7%) we found a serious asymptomatic PDN (≥5 neuropathic symptoms or pain ≥40 mm in the AVS) and 56 (93.3%) presented neuropathic pain (≥7 neuropathic signs). Using the Berg scale for the evaluation of postural instability, 32 patients (53.4%) presented a high to moderate risk of falls. The evaluation of functionality by the Lawton & Brody scale revealed that most of the patients, 52 (86.7%), presented a slight grade of dependence or were independent. Concerning depression, evaluated by the Beck scale, we found that 38 patients (63.4%) had a symptomatology of depression.

Comparison of the severity of neuropathy, postural instability, functionality, and depression among sexes

We found statistically significant differences between sexes concerning the intensity of pain, postural instability, and depression, with females presenting higher pain intensity (p=0.002), worse results on the Berg scale (p=0.018), and higher scores on the scale of depression (p=0.026).

On the other hand, we did not find statistically significant differences between sexes concerning loss of sensibility (p=0.282) and the number of neuropathic signs and symptoms, evaluated using the Lawton & Brody scale (p=0.056).

Comparison of the severity of neuropathy, instability, functionality, and depression with age

We found a statistically significant difference between the mean age of patients with and without loss of sensitivity (p=0.018). The mean age of patients with loss of protective sensibility was 71.3 years (±8.22) while patients without loss of protective sensibility presented a mean age of 62.8 (±10.42). We did not find any significant association between age and the presence of signs and symptoms and intensity of pain of the neuropathy.

It was possible to establish a negative association between age and postural instability (p=0.002) and functionality (p=0.001), that is, the older the patient, the worse stability and functionality. We also found a positive association between age and depression (p=0.011), which means that older patients presented more frequently with depressive symptomatology.

Association between the severity of neuropathy and postural instability, functionality, and depression

Concerning loss of sensitivity, we did not find statistically significant differences between instability, functionality, and depression between patients with or without loss of protective sensibility.

Also, we did not find a significant association between the presence of neuropathic symptoms and instability, functionality, and depression. Nevertheless, we found a negative association between neuropathic signs and instability and functionality, being a higher number of neuropathic signs associated with worse instability (p=0.017) and functionality (p=0.020). We found a positive association between the number of neuropathic signs and the presence of depressive symptomatology (p=0.035).

As far as pain results are concerned, we found that the intensity of pain is not associated with instability or functionality but there was a positive association between the intensity of pain and depression (p=0.023), that is, a higher intensity of pain is associated with the presence of more severe depressive symptomatology.

DISCUSSION

After analyzing the results obtained, we find that type 2 diabetes mellitus patients corresponded to the great majority of the sample (93.1%) and that in 50% of the sample the disease was present for more than 20 years. Other studies also found that in Portugal diabetic neuropathy has a greater prevalence in type 2 diabetes (Serra, 2008) and increases with the time of the pathology (Bibbo et al. 2006), affecting patients with diabetes mellitus for more than 10 years (Boulton et al. 2005).

Concerning associated pathologies, we found hypertension and dyslipidaemias in most of the patients. This is also in agreement with what was found by other authors that pointed out these as important independent factors for the development of complications in diabetic patients, namely, peripheral diabetic neuropathy (Tesfaye et al. 2005, Wiggin et al. 2009).

Regarding the assessment of diabetic neuropathy, by inspection, we verified the presence of all frequent signals of the pathology, with dry skin with cracks being the change that has the highest percentage. These results were also found by Boulton (2004). Concerning deformities, we found hollow feet and flat feet with the same percentage (30%). According to Abbot et al. (2005), Boulton, et al. (2008), and Perez, et al. (2010), neuropathic deformities such as the metatarsal heads and prominent bow are important components for the evaluation of diabetic neuropathy.

Most of the patients had loss of sensitivity. This is very important because the loss of protective plantar sensitivity, assessed by the 10-gram monofilament, is an alternative for a positive clinical diagnosis of peripheral diabetic neuropathy (Serra, 2008). Loss of sensitivity seems to be a key factor for the development of ulcers and greater susceptibility to trauma, for example, falls. (Chung, M. L., Widdel, et al., 2022).

Concerning neuropathic symptoms, we found that in most of the patients they were severe, unlike neuropathic signs that were
Peripheral diabetic neuropathy is a source of serious physical dysfunction, emotional suffering, and loss of quality of life (Galer et al. 2000). This clinical situation, sometimes accompanied by disabling pain, promotes a negative change in sleep, the ability to work effectively (functionality), humor, recreational activities, mobility, and overall quality of life, damaging the competence perceptions on important family roles (Quattrini & Tesfay, 2003). Recent research, with 1120 patients with PND shows a high level of anxiety, depression, and sleep disturbance. Thus, experts and clinics are suggested to focus on reducing these psychiatric symptoms (Davoudi et al., 2021).

CONCLUSIONS

The main object of the present study was to assess the severity of neuropathy in four domains: pain, loss of sensitivity, postural instability, and depression, in a Portuguese sample of diabetic patients, what we think is a new approach for the characterization of diabetic peripheral neuropathy. From our results, we can conclude that most diabetic patients presented loss of sensitivity, moderate pain, high to moderate risk of falls, and some symptomatology of depression.

It was also an objective of the present work the comparison of neuropathic characteristics between sexes and associated to age. This comparison revealed that females presented more pain, more instability, and more depressive symptomatology. The results obtained pointed out an association between age and postural instability, loss of functionality, and depression. We also found an association between age and the severity of diabetic neuropathy, assessed by the presence of neuropathic signs and symptoms and...
intensity of pain.

Finally, we also investigated the possible association between neuropathic characteristics with postural instability, functionality, and depression. From our results, we can conclude that there is an association between neuropathic signs and instability, functionality, and depression. We also found an association between the intensity of pain and depression.

The diabetic foot is one of the complications of diabetes with a greater impact, given both the morbidity it causes, and the socioeconomic impact it generates (Associação Protectora dos Diabéticos de Portugal, 2010). In conclusion, we can say that the results of the present study, although they must be confirmed in a large sample, are important in a context of a follow-up of diabetic patients by a multidisciplinary team, including a podiatrist as they can contribute to the prevention and early identification of risk factors and possible future complications.

REFERENCES


Ziegler, D. Treatment of diabetic neuropathy and neurophatic pain: how far have we come. Diabetes Care, 2008; 255-61.